The compound you described, **[4-(butan-2-ylamino)-6-chloro-1,3,5-triazin-2-yl]-[(1,1,3-trioxo-1,2-benzothiazol-2-yl)methyl]cyanamide**, is a complex molecule with a fascinating structure. It combines elements from different chemical classes, including:
* **1,3,5-triazine:** A six-membered heterocyclic ring containing nitrogen atoms, known for its versatility in forming various derivatives.
* **Benzothiazole:** A fused ring system containing benzene and thiazole, often used in pharmaceuticals and dyes.
* **Cyanamide:** A simple but highly reactive compound containing a cyano group (-CN).
This complex structure makes it a potential candidate for research in various fields, especially in the area of **drug discovery**.
**Here are some potential reasons why this compound could be of interest for research:**
* **Biological Activity:** The combination of triazine, benzothiazole, and cyanamide moieties can lead to diverse biological activities.
* **Triazines:** Known for their antifungal, herbicidal, and antibacterial properties.
* **Benzothiazoles:** Often found in drugs with anti-inflammatory, anti-cancer, and antimicrobial properties.
* **Cyanamide:** Has been studied for its potential in treating alcohol dependence and diabetes.
* **Target Specificity:** The unique structure could allow this compound to bind to specific protein targets within the body, leading to targeted therapeutic effects.
* **Chemical Modifications:** The multiple functional groups offer opportunities for chemical modifications, creating potential analogs with improved properties.
**However, it's crucial to understand that:**
* **No research data is available:** The compound name you provided is very specific and may not correspond to an existing molecule or one that has been studied.
* **Chemical Synthesis is Needed:** To evaluate the potential of this compound, it would need to be synthesized in the laboratory.
* **Biological Testing is Required:** After synthesis, extensive biological testing is necessary to determine the compound's actual activity, safety, and potential applications.
In conclusion, [4-(butan-2-ylamino)-6-chloro-1,3,5-triazin-2-yl]-[(1,1,3-trioxo-1,2-benzothiazol-2-yl)methyl]cyanamide is a fascinating molecule with potential research value in drug discovery. However, further investigation is needed to determine its specific properties and applications.
ID Source | ID |
---|---|
PubMed CID | 4133077 |
CHEMBL ID | 1576824 |
CHEBI ID | 109825 |
Synonym |
---|
OPREA1_567730 |
smr000312660 |
4-(sec-butylamino)-6-chloro-1,3,5-triazin-2-yl[(1,1-dioxido-3-oxo-1,2-benzisothiazol-2(3h)-yl)methyl]cyanamide |
MLS000685696 |
CHEBI:109825 |
[4-(butan-2-ylamino)-6-chloro-1,3,5-triazin-2-yl]-[(1,1,3-trioxo-1,2-benzothiazol-2-yl)methyl]cyanamide |
HMS1610E03 |
mfcd00349082 |
AKOS001625949 |
n-[4-(sec-butylamino)-6-chloro-1,3,5-triazin-2-yl]-n-[(1,1,3-trioxo-1,3-dihydro-2h-1,2-benzisothiazol-2-yl)methyl]cyanamide |
AKOS021989590 |
CHEMBL1576824 |
Q27189126 |
SR-01000080753-1 |
sr-01000080753 |
Class | Description |
---|---|
benzothiazoles | |
[compound class information is derived from Chemical Entities of Biological Interest (ChEBI), Hastings J, Owen G, Dekker A, Ennis M, Kale N, Muthukrishnan V, Turner S, Swainston N, Mendes P, Steinbeck C. (2016). ChEBI in 2016: Improved services and an expanding collection of metabolites. Nucleic Acids Res] |
Protein | Taxonomy | Measurement | Average (µ) | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
Chain A, JmjC domain-containing histone demethylation protein 3A | Homo sapiens (human) | Potency | 63.0957 | 0.6310 | 35.7641 | 100.0000 | AID504339 |
glp-1 receptor, partial | Homo sapiens (human) | Potency | 10.0000 | 0.0184 | 6.8060 | 14.1254 | AID624417 |
thioredoxin reductase | Rattus norvegicus (Norway rat) | Potency | 79.4328 | 0.1000 | 20.8793 | 79.4328 | AID588453 |
TDP1 protein | Homo sapiens (human) | Potency | 20.2550 | 0.0008 | 11.3822 | 44.6684 | AID686978; AID686979 |
Microtubule-associated protein tau | Homo sapiens (human) | Potency | 36.4261 | 0.1800 | 13.5574 | 39.8107 | AID1460; AID1468 |
Smad3 | Homo sapiens (human) | Potency | 12.5893 | 0.0052 | 7.8098 | 29.0929 | AID588855 |
aldehyde dehydrogenase 1 family, member A1 | Homo sapiens (human) | Potency | 12.5893 | 0.0112 | 12.4002 | 100.0000 | AID1030 |
euchromatic histone-lysine N-methyltransferase 2 | Homo sapiens (human) | Potency | 50.1187 | 0.0355 | 20.9770 | 89.1251 | AID504332 |
vitamin D3 receptor isoform VDRA | Homo sapiens (human) | Potency | 39.8107 | 0.3548 | 28.0659 | 89.1251 | AID504847 |
parathyroid hormone/parathyroid hormone-related peptide receptor precursor | Homo sapiens (human) | Potency | 39.8107 | 3.5481 | 19.5427 | 44.6684 | AID743266 |
pyruvate kinase PKM isoform a | Homo sapiens (human) | Potency | 35.4813 | 0.0401 | 7.4590 | 31.6228 | AID1631; AID1634 |
geminin | Homo sapiens (human) | Potency | 29.0929 | 0.0046 | 11.3741 | 33.4983 | AID624296; AID624297 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Protein | Taxonomy | Measurement | Average | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
recombinase A | Mycobacterium tuberculosis H37Rv | EC50 (µMol) | 30.9450 | 0.0180 | 23.2882 | 287.6000 | AID434968; AID435010 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Protein | Taxonomy | Measurement | Average | Min (ref.) | Avg (ref.) | Max (ref.) | Bioassay(s) |
---|---|---|---|---|---|---|---|
replicative DNA helicase | Mycobacterium tuberculosis H37Rv | AC50 | 196.9850 | 0.0570 | 30.7482 | 325.3000 | AID449749; AID449750 |
[prepared from compound, protein, and bioassay information from National Library of Medicine (NLM), extracted Dec-2023] |
Assay ID | Title | Year | Journal | Article |
---|---|---|---|---|
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588497 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain F protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588501 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Lethal Factor Protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID504812 | Inverse Agonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Current protocols in cytometry, Oct, Volume: Chapter 13 | Microsphere-based flow cytometry protease assays for use in protease activity detection and high-throughput screening. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2006 | Cytometry. Part A : the journal of the International Society for Analytical Cytology, May, Volume: 69, Issue:5 | Microsphere-based protease assays and screening application for lethal factor and factor Xa. |
AID588499 | High-throughput multiplex microsphere screening for inhibitors of toxin protease, specifically Botulinum neurotoxin light chain A protease, MLPCN compound set | 2010 | Assay and drug development technologies, Feb, Volume: 8, Issue:1 | High-throughput multiplex flow cytometry screening for botulinum neurotoxin type a light chain protease inhibitors. |
AID651635 | Viability Counterscreen for Primary qHTS for Inhibitors of ATXN expression | |||
AID1745845 | Primary qHTS for Inhibitors of ATXN expression | |||
AID504810 | Antagonists of the Thyroid Stimulating Hormone Receptor: HTS campaign | 2010 | Endocrinology, Jul, Volume: 151, Issue:7 | A small molecule inverse agonist for the human thyroid-stimulating hormone receptor. |
AID588519 | A screen for compounds that inhibit viral RNA polymerase binding and polymerization activities | 2011 | Antiviral research, Sep, Volume: 91, Issue:3 | High-throughput screening identification of poliovirus RNA-dependent RNA polymerase inhibitors. |
AID540299 | A screen for compounds that inhibit the MenB enzyme of Mycobacterium tuberculosis | 2010 | Bioorganic & medicinal chemistry letters, Nov-01, Volume: 20, Issue:21 | Synthesis and SAR studies of 1,4-benzoxazine MenB inhibitors: novel antibacterial agents against Mycobacterium tuberculosis. |
AID1794808 | Fluorescence-based screening to identify small molecule inhibitors of Plasmodium falciparum apicoplast DNA polymerase (Pf-apPOL). | 2014 | Journal of biomolecular screening, Jul, Volume: 19, Issue:6 | A High-Throughput Assay to Identify Inhibitors of the Apicoplast DNA Polymerase from Plasmodium falciparum. |
AID1794808 | Fluorescence-based screening to identify small molecule inhibitors of Plasmodium falciparum apicoplast DNA polymerase (Pf-apPOL). | |||
[information is prepared from bioassay data collected from National Library of Medicine (NLM), extracted Dec-2023] |
Timeframe | Studies, This Drug (%) | All Drugs % |
---|---|---|
pre-1990 | 0 (0.00) | 18.7374 |
1990's | 0 (0.00) | 18.2507 |
2000's | 1 (11.11) | 29.6817 |
2010's | 6 (66.67) | 24.3611 |
2020's | 2 (22.22) | 2.80 |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |
According to the monthly volume, diversity, and competition of internet searches for this compound, as well the volume and growth of publications, there is estimated to be weak demand-to-supply ratio for research on this compound.
| This Compound (12.04) All Compounds (24.57) |
Publication Type | This drug (%) | All Drugs (%) |
---|---|---|
Trials | 0 (0.00%) | 5.53% |
Reviews | 0 (0.00%) | 6.00% |
Case Studies | 0 (0.00%) | 4.05% |
Observational | 0 (0.00%) | 0.25% |
Other | 9 (100.00%) | 84.16% |
[information is prepared from research data collected from National Library of Medicine (NLM), extracted Dec-2023] |